政府主导下的产业链大数据建设与应用研究

杨军,孙立
（盐城工学院 经济管理学院，江苏 盐城 224003）

摘要：随着广大企业对产业链信息需求的不断提高，对已有在互联网需求牵引下的大数据平台建设、信息融合以及人才培养带来的挑战也越来越严峻。在这种情况下，产业链大数据平台的平台级融合、安全管理、人才培养以及工作制度转换与升级，也给出了产业链大数据平台未来的应用前景和发展方向。

关键词：产业链大数据；政府主导；可视化交互；团队建设

中图分类号：G353 文献标识码：A 文章编号：1008-5092(2019)04-0036-05

产业链大数据是指各产业从设计规划、生产销售到售后维护过程中所产生的一切数据的集合。除互联网产业所拥有的软硬件技术与信息系统外，更重要的是其产业链中多产业、多行业、多领域的信息接入，包含了大数据、云计算、移动互联网、工业互联网、能源互联网等多个维度数据，其生态圈可以无限衍生发展。

目前，政府各部门掌握和占有了大量的产业链信息资源，诸如工业生产、交通运输、旅游、电子商务、环境保护等多个领域。但由此涉及公共安全、商业机密、访问控制、实时计算、可视化交互等复杂原因，即产业的产业链或少数行业的大数据平台仍主要建立在实时新闻、国家权威部门统计、上市公公司公告等Web信息之上。[1] 既难以占领“全价值链”数据，也无法在众多“互联网+”服务中发挥与物联网的融合优化，并为广大中小企业提供个性化的动态产业链分析与智慧生产服务。本文通过分析已有产业链大数据的融合特点、平台突出问题和企业需求，提出了政府主导下的产业链大数据平台建设与发展策略，以及未来发展方向。

一、当前政府产业链大数据应用的突出问题

产业链大数据从四个方面（“4C”）改变了传统市场运作方式，通过整合分析产业链上下游企业数据，在风险控制、运营管理、销售支持和商业模式革新等领域实现了一定的商业价值，包括数据质量的兼容性（Compatibility）、数据使用的关联性（Connectedness）、数据采集的成本（Cost）以及数据价值的转化（Capitalization）。但在应用服务的过程中，多数研究是被动接受政府统计数据或在已拥有海量数据的前提下研究问题，对传统意义上产业链现象或科学规律的再现，以及企业具体的业务需求出发去收集整理数据。具体体现在以下五个方面：

（1）非结构化数据来源有限，融合“广度”有限。目前产业链大数据主要来源于互联网下的各Web网络管理信息系统，如政府各部门统计数据、企业自身的ERP、CRM系统、网站新闻等，[2]主要服务于管理层的统计与决策支持。但在“互联网+”不断发展的过程中，来源于工业互联网、能源互联网、车联网等“两化”产业中的非结构化物联网数据[3]却非常有限，其数据感知、采集、执行、交互接口、应用模式等仍有理论或技术标准方面的挑战。[2]物联网大数据与生产制造业、服务业、商业、金融等数据融合不足，无法为产业链智能化提供支撑。

（2）缺乏自动化学习机制，知识发现能力不
足[4]。面对日益膨胀的产业链海量数据，政府各部门间跨学科非结构化数据难以分析，更缺乏实体之间的精确关联关系描述。大数据平台缺乏有效数据、行业背景与领域专家知识建模的自动化知识利用机制，导致实体之间的信息关联或线索形成难以被发现。研究者只能通过预先定义的复杂算法与主观假设来验证“单点 + 经验”，知识发现能力不足，平台边际效益较低。

(3) 数据有价，许可和信任管理复杂[5]。目前大数据的隐私保护技术仍主要集中在个人隐私保护的主动、被动式中间保护上。但对于产业链中大量商业机密、公共安全数据等，大数据的所有权、交易规则、审批管理等问题依然模糊不清，许可和信任管理复杂，缺乏相应的法律法规与技术标准。缺乏丰富且流动的原始数据，大数据平台不仅作为业务的信息载体和计算载体，商业模式类似，极大地影响了全产业链数据之间的进一步整合与分析。

(4) 复合型人才匮乏，项目协调困难。在大数据价值链中，数据、技术与思维三足鼎立。目前产业链大数据平台在数据与技术方面已有一定的基础，但复合型人才的匮乏，无法让具备业务视角和技术创新能力的联合团队高效运作，提高产业信息的效率，也难以用关联而非因果的视角帮助决策者解读产业链，以创新思维，驱动商业模式与运营模式进行深刻变革。[8] 大数据人才建设亟待政府、产业界和高校的联合培养，人才培育机制需要创新。

(5) 缺乏可量化工具以及开源平台级 SDK。目前，已有的产业链大数据平台缺乏丰富直观的可量化交互工具，[7] 用户只能被动地接受有限的图表与分析，无法对政府各部门间的大数据进行探索式考察。开源平台级 SDK 的缺失，导致无法以技术扩散的方式开发基于产业链大数据分析的创新工具来简化数据的收集、实时处理，选择指引与交互反馈，更无法通过自定义的“试错机制”对复杂多样的大数据进行关联分析、判断商机或噪声。

二、政府主导下的产业链大数据服务

产业链大数据是在传统四大数据来源，即管理信息系统、Web 信息系统、信息物理系统和科学实验系统综合之上的复杂数据集合。高度的复杂性和联动性使得政府在产业链大数据的技术创新、开放与融合、个人隐私与商业秘密保护以及分析应用等方面不能直接运用互联网大数据的经验。因此，亟须解决的问题是：(1) 符合产业链需求的在产业链大数据平台基础建设上，聚集产学研的力量在产业链大数据平台建设上取得突破，以此为核心发展开源生态系统，促进开源技术的扩散和行业应用的扩展。② 符合法律法规的大数据安全保护标准和运行机制。重点区分大数据体系下数据拥有者、数据审计者、数据分析者与数据分发者之间的关系，建立安全的数据访问控制策略、流动机制和审批机制，加强政府监管。③ 跨学科的智能可视化交互工具。带有垂直行业应用的跨学科模型应用技术工具和专业领域知识建模是产业链大数据应用的核心，以此为基础的可视化工具使得非计算机专业人员也可以使用智能互动的信息服务。④ 复合型人才的培养机制。复合型人才和联合团队是产业链大数据成功应用的关键，跨部门、跨行业的工作机制要求在人才的选拔、考核和职业发展等关键方面有配套举措。

1. 产业链大数据平台级软件建设

产业链大数据从采集、整合、分析到智慧应用需经过四个层次及三项技术，如图 1 所示。

政府作为产业链数据的拥有者，需要以开放的思维对整个大数据生态链进行有效管理。

(1) 基础设施建设。包括网络带宽、数据存储备云计算（私有云、公共云、混合云）[8]，大数据采集机制。政府统筹各相关产业云计算数据中心发展，积极探索跨行业、跨领域共建共享机制和模式，推动建设一批公共平台，互联网应用服务、重点行业和大型企业云计算数据中心和远程备份中心。同时，以产业需求为导向，综合行政收集、网络搜索、自愿参与、有偿购买、传感器收集等方式建立自动、精准，实时的大数据采集体系。加强对企业信息系统规划与大数据采集需求的融合指导，鼓励制造企业和商业机构对对企业经营活动中的数据的采集，[9] 将“工业经济”中的“计算机 + 软件”模式向适应“数字经济”特点的“云计算 + 数据”模式转变。

(2) 开源平台级软件架构。产业链大数据的生命周期以及复杂的分析需求要将传统平台的 IT 架构进行全面的架构改进。政府通过聚集产学研的力量，建立开源的大数据平台级软件
架构及 SDK，实现包含底层框架模型、中间层编 程、应用层框架、实现层框架和资源管理层等五个 级别的统一接口。从数据收集与存储、信息整合、 自动化学习、分析预测到洞察挖掘的各阶段都融 入产业链大数据平台架构内，以开放扩展的途径 不断开发基于产业链大数据分析的创新应用。 “信息经济” 的治理模式将原有的政府集中控制 向依靠大众创新、共同治理方向转变。

（3）“互联网 +”服务。信息基础设施建设和 能力提升，加速了信息要素在各相关部门中的渗 透，企业客户为导向，以需求为核心的经营策略 迫使企业组织形式相应改变，使大规模社会化协 同成为可能。政府推动下的“互联网 +”服务，将 以夯实新信息基础设施，提升原有工农业基础设施、创新互联网经济、渗透传统产业为指向，为 产业设计、工程管理、产品验证、规划运作以及生产 制造的转型与增长开辟新道路。

2. 大数据安全访问控制与审批
产业链大数据所涉及的信息维度、能否合理、 有序、有价地共享是其成功应用的核心。因此，在 大数据流通的过程中，需合理分配并制定其五项 基本权利，即：原始数据拥有权、原始数据隐私权、 应用数据许可权、应用数据审批权和决策数据分 权。在产业链大数据环境下，政府管理和社会法 务人员通过形式化的语言，采用合适的访问控制模 型对可能涉及国家安全、商业机密、个人隐私的风 险点进行控制，对使用者进行使用授权，对数据敏 感数据脱敏，确定开放优先级，制定分步骤的数据开放 路线图，并动态地追踪审计数据使用情况。最后， 根据数据共享程度以及最终使用的价值，各方享 受相应的分成。政府在大数据领域中的关键的 基础上，积极探索建设面向政府信息采集和管控、 敏感数据管理、数据交换标准和规则、个人隐私和 商业秘密等领域的数据安全保障制度，明确大数据 采集、使用、开发等环节及信息安全的范围、要求 和责任，确保国家利益、社会安全、商业秘密、个人 隐私等信息不受侵犯，为产业链大数据的正常流 通创造有利条件。[10]

3. 可视化的跨部门跨学科交互工具
借助开源平台级软件开发可视化工具，将是 跨部门、跨学科的交叉数据融合统计分析发展的 重大趋势。①多视图整合，探索不同维度的大数 据关系。通过理清跨部门的海量数据指标与维 度，按主题体系地呈现产业链复杂数据背后的 联系；将多个视图整合，展示同一数据在不同维度 下呈现的数据背后的规律，帮助用户从不同角度 分析数据，缩小方案的范围，展示数据的不同 影响，便于用户及时捕捉其关注的数据信息。②产
业链大数据视图交互联动。将数据图片转化为数据查询, ① 每一项数据在不同维度下交交互联动, 展示数据在不同角度的着手, ② 帮助使用者识别趋势, 发现数据背后的知识与规律。帮助用户通过交互, 挖掘数据之间的关联。并支持数据的上钻下探, 多维并行分析, 推动决策。③ 可视化跨学科的交互工具还使得不同经济社会模型的分析可以通过众筹、众包等方式来完成。

4. 建设联合团队、转变思维方式

目前, 政府各部门间的产业链大数据分析服务, 不仅在数据上呈现“分治”的状态, 人才的流动与回暖往往也相当困难。复合型人才和联合团队的缺乏、工作机制的不足, 以及大数据思维的欠缺是阻碍产业链大数据发展的三个关键因素。

(1) 培养复合型人才, 建设联合团队。在大数据时代, 虽然智慧应用层出不穷, 自动化学习不断“代替”人脑, 但价值创造的主角仍然是复合型人才。善于“跨界”的复合型人才和联合团队是产业链环节中的稀缺资源, 其培育与发展必须融入政府机构和企事业单位的日常工作中, 提供相应的培养方案和支持配套政策。而要让团队高效运作, 需形成高效工作配套机制。

(2) 形成高效的工作机制。海量大数据中大量的“小数据”需要通过灵活、快速而又严谨的工作机制才能最终形成“大数据”。对产业链大数据平台而言, 引入“试错机制”、提高人才管理与组织管控的弹性是高效工作机制的核心。

(3) 转变思维是根本。产业链大数据的链条中汇聚了行政管理、咨询顾问、数据科学家、行业专家、技术专家等各类人才，驱动着各行各业管理和数据分析师在大数据战略、情报分析、企业信息管理、智慧化生产和创新业务模式, 业务能力建设等各领域进行机制变革。

三、政府主导下的产业链大数据服务未来发展方向

目前我国政府大数据发展主要集中在政务、公共服务、民生服务和城市治理等方面, 并在一定程度上促进了互联网、电信、金融等行业的大数据融合与创新应用。产业链大数据体系由于其广泛的数据集成性和复杂性的跨领域统计模型, 使其更加依赖于丰富的数据资源、新型应用特点、工具以及云端结合的突破发展。

(1) 产业链大数据的协同性[11]；处在产业链上的各级企业以及终端用户都会成为政府、企业以及社会关注的重要资源。在保护商业秘密和个人隐私的前提下, 从政府行政规划、企业设计生产到用户反馈的各个阶段都在协同工作, “互联网 + ”下的产业链应用该会达到极大提高。

(2) 跨学科商业模型提高决策准确性; 用户通过不同领域的专家模型, 开源平台级 SDK/API 和可视化工具, 进行“试错实验”。在政府主导下
Government-led Construction and Application Research on Big Data of Industry Chain

YANG Jun, SUN Li
(School of Economics and Management, Yancheng Institute of Technology, Yancheng Jiangsu 224003 China)

Abstract: With the increasing growth of big data of information industry chain, it brings serious challenges to build big data platform, information integration and personnel training under internet demands. On the basis of analysis industry chain big data, combining “Internet +”, put forward industry chain big data platform integration, security management, team training, working mechanism reform and further proposed the application prospects and the implementation path.

Keywords: big data in industry chain; government-led; visual interaction; team construction